Poste de recherche
Résumé :
Nous étendons le cadre des options pour l'abstraction temporelle dans l'apprentissage par renforcement des processus de décision de Markov (PDM) actualisés aux PDM à récompense moyenne. Nos contributions comprennent des algorithmes généraux convergents d'apprentissage inter-options hors politique, des algorithmes intra-options pour l'apprentissage de valeurs et de modèles, ainsi que des variantes de planification par échantillonnage de nos algorithmes d'apprentissage. Nos algorithmes et nos preuves de convergence étendent ceux récemment développés par Wan, Naik et Sutton. Nous étendons également la notion de comportement d'interruption de l'option de la formulation avec remise à la formulation avec récompense moyenne. Nous démontrons l'efficacité des algorithmes proposés par des expériences sur une version continue du domaine des quatre pièces.
1er février 2023
Poste de recherche
Lisez ce document de recherche, co-écrit par Russ Greiner, boursier et titulaire de la chaire d'IA de l'ICRA au Canada : Vers un système de santé apprenant basé sur l'intelligence artificielle pour la prédiction de la mortalité au niveau de la population à l'aide d'électrocardiogrammes
31 janvier 2023
Poste de recherche
20 janvier 2023
Poste de recherche
Vous cherchez à renforcer les capacités en matière d'IA ? Vous avez besoin d'un conférencier pour votre événement ?
Participez à l'écosystème croissant de l'IA en Alberta ! Les demandes de conférenciers, de parrainage et de lettres de soutien sont les bienvenues.