Poste de recherche
Classical global convergence results for first-order methods rely on uniform smoothness and the Łojasiewicz inequality. Motivated by properties of objective functions that arise in machine learning, we propose a non-uniform refinement of these notions, leading to \emph{Non-uniform Smoothness} (NS) and \emph{Non-uniform Łojasiewicz inequality} (NŁ). The new definitions inspire new geometry-aware first-order methods that are able to converge to global optimality faster than the classical Ω(1/t2) lower bounds. To illustrate the power of these geometry-aware methods and their corresponding non-uniform analysis, we consider two important problems in machine learning: policy gradient optimization in reinforcement learning (PG), and generalized linear model training in supervised learning (GLM). For PG, we find that normalizing the gradient ascent method can accelerate convergence to O(e−t) while incurring less overhead than existing algorithms. For GLM, we show that geometry-aware normalized gradient descent can also achieve a linear convergence rate, which significantly improves the best known results. We additionally show that the proposed geometry-aware descent methods escape landscape plateaus faster than standard gradient descent. Experimental results are used to illustrate and complement the theoretical findings.
15 février 2022
Poste de recherche
Lisez ce document de recherche, co-écrit par Osmar Zaiane, boursier Amii et président du CIFAR AI au Canada : UCTransNet : Repenser les connexions de saut dans U-Net d'une perspective de canal avec Transformer.
27 septembre 2021
Poste de recherche
17 septembre 2021
Poste de recherche
Vous cherchez à renforcer les capacités en matière d'IA ? Vous avez besoin d'un conférencier pour votre événement ?
Participez à l'écosystème croissant de l'IA en Alberta ! Les demandes de conférenciers, de parrainage et de lettres de soutien sont les bienvenues.