Poste de recherche
In online convex optimization (OCO), Lipschitz continuity of the functions is commonly assumed in order to obtain sublinear regret. Moreover, many algorithms have only logarithmic regret when these functions are also strongly convex. Recently, researchers from convex optimization proposed the notions of <code>relative Lipschitz continuity'' and</code>relative strong convexity''. Both of the notions are generalizations of their classical counterparts. It has been shown that subgradient methods in the relative setting have performance analogous to their performance in the classical setting.</p> <p>In this work, we consider OCO for relative Lipschitz and relative strongly convex functions. We extend the known regret bounds for classical OCO algorithms to the relative setting. Specifically, we show regret bounds for the follow the regularized leader algorithms and a variant of online mirror descent. Due to the generality of these methods, these results yield regret bounds for a wide variety of OCO algorithms. Furthermore, we further extend the results to algorithms with extra regularization such as regularized dual averaging.
15 février 2022
Poste de recherche
Lisez ce document de recherche, co-écrit par Osmar Zaiane, boursier Amii et président du CIFAR AI au Canada : UCTransNet : Repenser les connexions de saut dans U-Net d'une perspective de canal avec Transformer.
27 septembre 2021
Poste de recherche
17 septembre 2021
Poste de recherche
Vous cherchez à renforcer les capacités en matière d'IA ? Vous avez besoin d'un conférencier pour votre événement ?
Participez à l'écosystème croissant de l'IA en Alberta ! Les demandes de conférenciers, de parrainage et de lettres de soutien sont les bienvenues.